資源描述:
《高考數(shù)學(xué)圓錐曲線方程知識(shí)點(diǎn)總結(jié)及解題思路方法》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
高考數(shù)學(xué)圓錐曲線方程知識(shí)點(diǎn)總結(jié)及解題思路方法考試內(nèi)容:數(shù)學(xué)探索?版權(quán)所有www.delve.cn橢圓及其標(biāo)準(zhǔn)方程.橢圓的簡單幾何性質(zhì).橢圓的參數(shù)方程.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn雙曲線及其標(biāo)準(zhǔn)方程.雙曲線的簡單幾何性質(zhì).?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn拋物線及其標(biāo)準(zhǔn)方程.拋物線的簡單幾何性質(zhì).?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn考試要求:數(shù)學(xué)探索?版權(quán)所有www.delve.cn(1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡單幾何性質(zhì),了解橢圓的參數(shù)方程.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn(2)掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡單幾何性質(zhì).?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn(3)掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡單幾何性質(zhì).?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn(4)了解圓錐曲線的初步應(yīng)用.§08.圓錐曲線方程知識(shí)要點(diǎn)一、橢圓方程.1.橢圓方程的第一定義:⑴①橢圓的標(biāo)準(zhǔn)方程:i.中心在原點(diǎn),焦點(diǎn)在x軸上:.ii.中心在原點(diǎn),焦點(diǎn)在軸上:.②一般方程:.③橢圓的標(biāo)準(zhǔn)參數(shù)方程:的參數(shù)方程為(一象限應(yīng)是屬于).⑵①頂點(diǎn):或.②軸:對稱軸:x軸,軸;長軸長,短軸長.③焦點(diǎn):或.④焦距:
1.⑤準(zhǔn)線:或.⑥離心率:.⑦焦點(diǎn)半徑:i.設(shè)為橢圓上的一點(diǎn),為左、右焦點(diǎn),則由橢圓方程的第二定義可以推出.ii.設(shè)為橢圓上的一點(diǎn),為上、下焦點(diǎn),則由橢圓方程的第二定義可以推出.由橢圓第二定義可知:歸結(jié)起來為“左加右減”.注意:橢圓參數(shù)方程的推導(dǎo):得方程的軌跡為橢圓.⑧通徑:垂直于x軸且過焦點(diǎn)的弦叫做通經(jīng).坐標(biāo):和⑶共離心率的橢圓系的方程:橢圓的離心率是,方程是大于0的參數(shù),的離心率也是我們稱此方程為共離心率的橢圓系方程.⑸若P是橢圓:上的點(diǎn).為焦點(diǎn),若,則的面積為(用余弦定理與可得).若是雙曲線,則面積為.二、雙曲線方程.1.雙曲線的第一定義:⑴①雙曲線標(biāo)準(zhǔn)方程:.一般方程:
2.⑵①i.焦點(diǎn)在x軸上:頂點(diǎn):焦點(diǎn):準(zhǔn)線方程漸近線方程:或ii.焦點(diǎn)在軸上:頂點(diǎn):.焦點(diǎn):.準(zhǔn)線方程:.漸近線方程:或,參數(shù)方程:或.②軸為對稱軸,實(shí)軸長為2a,虛軸長為2b,焦距2c.③離心率.④準(zhǔn)線距(兩準(zhǔn)線的距離);通徑.⑤參數(shù)關(guān)系.⑥焦點(diǎn)半徑公式:對于雙曲線方程(分別為雙曲線的左、右焦點(diǎn)或分別為雙曲線的上下焦點(diǎn))“長加短減”原則:構(gòu)成滿足(與橢圓焦半徑不同,橢圓焦半徑要帶符號計(jì)算,而雙曲線不帶符號)⑶等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.⑷共軛雙曲線:以已知雙曲線的虛軸為實(shí)軸,實(shí)軸為虛軸的雙曲線,叫做已知雙曲線的共軛雙曲線.與
3互為共軛雙曲線,它們具有共同的漸近線:.⑸共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時(shí),它的雙曲線方程可設(shè)為.例如:若雙曲線一條漸近線為且過,求雙曲線的方程?解:令雙曲線的方程為:,代入得.⑹直線與雙曲線的位置關(guān)系:區(qū)域①:無切線,2條與漸近線平行的直線,合計(jì)2條;區(qū)域②:即定點(diǎn)在雙曲線上,1條切線,2條與漸近線平行的直線,合計(jì)3條;區(qū)域③:2條切線,2條與漸近線平行的直線,合計(jì)4條;區(qū)域④:即定點(diǎn)在漸近線上且非原點(diǎn),1條切線,1條與漸近線平行的直線,合計(jì)2條;區(qū)域⑤:即過原點(diǎn),無切線,無與漸近線平行的直線.小結(jié):過定點(diǎn)作直線與雙曲線有且僅有一個(gè)交點(diǎn),可以作出的直線數(shù)目可能有0、2、3、4條.(2)若直線與雙曲線一支有交點(diǎn),交點(diǎn)為二個(gè)時(shí),求確定直線的斜率可用代入法與漸近線求交和兩根之和與兩根之積同號.⑺若P在雙曲線,則常用結(jié)論1:P到焦點(diǎn)的距離為m=n,則P到兩準(zhǔn)線的距離比為m︰n.簡證:=.
4常用結(jié)論2:從雙曲線一個(gè)焦點(diǎn)到另一條漸近線的距離等于b.三、拋物線方程.3.設(shè),拋物線的標(biāo)準(zhǔn)方程、類型及其幾何性質(zhì):圖形焦點(diǎn)準(zhǔn)線范圍對稱軸軸軸頂點(diǎn)(0,0)離心率焦點(diǎn)注:①頂點(diǎn).②則焦點(diǎn)半徑;則焦點(diǎn)半徑為.
5③通徑為2p,這是過焦點(diǎn)的所有弦中最短的.④(或)的參數(shù)方程為(或)(為參數(shù)).四、圓錐曲線的統(tǒng)一定義..4.圓錐曲線的統(tǒng)一定義:平面內(nèi)到定點(diǎn)F和定直線的距離之比為常數(shù)的點(diǎn)的軌跡.當(dāng)時(shí),軌跡為橢圓;當(dāng)時(shí),軌跡為拋物線;當(dāng)時(shí),軌跡為雙曲線;當(dāng)時(shí),軌跡為圓(,當(dāng)時(shí)).5.圓錐曲線方程具有對稱性.例如:橢圓的標(biāo)準(zhǔn)方程對原點(diǎn)的一條直線與雙曲線的交點(diǎn)是關(guān)于原點(diǎn)對稱的.因?yàn)榫哂袑ΨQ性,所以欲證AB=CD,即證AD與BC的中點(diǎn)重合即可.注:橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)橢圓雙曲線拋物線
6定義1.到兩定點(diǎn)F1,F2的距離之和為定值2a(2a>|F1F2|)的點(diǎn)的軌跡1.到兩定點(diǎn)F1,F2的距離之差的絕對值為定值2a(0<2a<|F1F2|)的點(diǎn)的軌跡2.與定點(diǎn)和直線的距離之比為定值e的點(diǎn)的軌跡.(01)與定點(diǎn)和直線的距離相等的點(diǎn)的軌跡.圖形方程標(biāo)準(zhǔn)方程(>0)(a>0,b>0)y2=2px參數(shù)方程(t為參數(shù))范圍─a£x£a,─b£y£b|x|3a,y?Rx30中心原點(diǎn)O(0,0)原點(diǎn)O(0,0)頂點(diǎn)(a,0),(─a,0),(0,b),(0,─b)(a,0),(─a,0)(0,0)
7對稱軸x軸,y軸;長軸長2a,短軸長2bx軸,y軸;實(shí)軸長2a,虛軸長2b.x軸焦點(diǎn)F1(c,0),F2(─c,0)F1(c,0),F2(─c,0)焦距2c(c=)2c(c=)離心率e=1準(zhǔn)線x=x=漸近線y=±x焦半徑通徑2p焦參數(shù)P1.橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程的其他形式及相應(yīng)性質(zhì).2.等軸雙曲線3.共軛雙曲線5.方程y2=ax與x2=ay的焦點(diǎn)坐標(biāo)及準(zhǔn)線方程.6.共漸近線的雙曲線系方程.