国产乱人视频免费观看网站,九九精品视频在线观看,九九久re8在线精品视频,日韩久久精品五月综合

<menu id="zjelp"></menu>

    <th id="zjelp"><tbody id="zjelp"><form id="zjelp"></form></tbody></th>
    <small id="zjelp"><menuitem id="zjelp"></menuitem></small>
  • <small id="zjelp"></small>

    <address id="zjelp"></address>
    <address id="zjelp"></address>
    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法

    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法

    ID:82083724

    大小:172.68 KB

    頁數(shù):9頁

    時間:2023-12-08

    上傳者:萬里一葉飄
    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法_第1頁
    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法_第2頁
    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法_第3頁
    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法_第4頁
    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法_第5頁
    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法_第6頁
    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法_第7頁
    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法_第8頁
    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法_第9頁
    資源描述:

    《高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。

    高考數(shù)學(xué)直線和圓的方程知識點總結(jié)及解題思路方法考試內(nèi)容:數(shù)學(xué)探索?版權(quán)所有www.delve.cn直線的傾斜角和斜率,直線方程的點斜式和兩點式.直線方程的一般式.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn兩條直線平行與垂直的條件.兩條直線的交角.點到直線的距離.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn用二元一次不等式表示平面區(qū)域.簡單的線性規(guī)劃問題.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn曲線與方程的概念.由已知條件列出曲線方程.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn圓的標(biāo)準(zhǔn)方程和一般方程.圓的參數(shù)方程.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn考試要求:數(shù)學(xué)探索?版權(quán)所有www.delve.cn(1)理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn(2)掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn(3)了解二元一次不等式表示平面區(qū)域.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn(4)了解線性規(guī)劃的意義,并會簡單的應(yīng)用.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn(5)了解解析幾何的基本思想,了解坐標(biāo)法.?dāng)?shù)學(xué)探索?版權(quán)所有www.delve.cn(6)掌握圓的標(biāo)準(zhǔn)方程和一般方程,了解參數(shù)方程的概念。理解圓的參數(shù)方程.§07.直線和圓的方程知識要點一、直線方程.1.直線的傾斜角:一條直線向上的方向與

    1軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為0,故直線傾斜角的范圍是.注:①當(dāng)或時,直線垂直于軸,它的斜率不存在.②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時,其傾斜角也對應(yīng)確定.2.直線方程的幾種形式:點斜式、截距式、兩點式、斜切式.特別地,當(dāng)直線經(jīng)過兩點,即直線在軸,軸上的截距分別為時,直線方程是:.注:若是一直線的方程,則這條直線的方程是,但若則不是這條線.附:直線系:對于直線的斜截式方程,當(dāng)均為確定的數(shù)值時,它表示一條確定的直線,如果變化時,對應(yīng)的直線也會變化.①當(dāng)為定植,變化時,它們表示過定點(0,)的直線束.②當(dāng)為定值,變化時,它們表示一組平行直線.3.⑴兩條直線平行:∥兩條直線平行的條件是:①和是兩條不重合的直線.②在和的斜率都存在的前提下得到的.因此,應(yīng)特別注意,抽掉或忽視其中任一個“前提”都會導(dǎo)致結(jié)論的錯誤.(一般的結(jié)論是:對于兩條直線,它們在軸上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且)

    2推論:如果兩條直線的傾斜角為則∥.⑵兩條直線垂直:兩條直線垂直的條件:①設(shè)兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在.②,且的斜率不存在或,且的斜率不存在.(即是垂直的充要條件)4.直線的交角:⑴直線到的角(方向角);直線到的角,是指直線繞交點依逆時針方向旋轉(zhuǎn)到與重合時所轉(zhuǎn)動的角,它的范圍是,當(dāng)時.⑵兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個角中最小的正角,又稱為和所成的角,它的取值范圍是,當(dāng),則有.5.過兩直線的交點的直線系方程為參數(shù),不包括在內(nèi))6.點到直線的距離:⑴點到直線的距離公式:設(shè)點,直線到的距離為,則有.注:1.兩點P1(x1,y1)、P2(x2,y2)的距離公式:.特例:點P(x,y)到原點O的距離:

    31.定比分點坐標(biāo)分式。若點P(x,y)分有向線段,其中P1(x1,y1),P2(x2,y2).則特例,中點坐標(biāo)公式;重要結(jié)論,三角形重心坐標(biāo)公式。2.直線的傾斜角(0°≤<180°)、斜率:3.過兩點.當(dāng)(即直線和x軸垂直)時,直線的傾斜角=,沒有斜率⑵兩條平行線間的距離公式:設(shè)兩條平行直線,它們之間的距離為,則有.注;直線系方程1.與直線:Ax+By+C=0平行的直線系方程是:Ax+By+m=0.(m?R,C≠m).2.與直線:Ax+By+C=0垂直的直線系方程是:Bx-Ay+m=0.(m?R)3.過定點(x1,y1)的直線系方程是:A(x-x1)+B(y-y1)=0(A,B不全為0)4.過直線l1、l2交點的直線系方程:(A1x+B1y+C1)+λ(A2x+B2y+C2)=0(λ?R)注:該直線系不含l2.7.關(guān)于點對稱和關(guān)于某直線對稱:

    4⑴關(guān)于點對稱的兩條直線一定是平行直線,且這個點到兩直線的距離相等.⑵關(guān)于某直線對稱的兩條直線性質(zhì):若兩條直線平行,則對稱直線也平行,且兩直線到對稱直線距離相等.若兩條直線不平行,則對稱直線必過兩條直線的交點,且對稱直線為兩直線夾角的角平分線.⑶點關(guān)于某一條直線對稱,用中點表示兩對稱點,則中點在對稱直線上(方程①),過兩對稱點的直線方程與對稱直線方程垂直(方程②)①②可解得所求對稱點.注:①曲線、直線關(guān)于一直線()對稱的解法:y換x,x換y.例:曲線f(x,y)=0關(guān)于直線y=x–2對稱曲線方程是f(y+2,x–2)=0.②曲線C:f(x,y)=0關(guān)于點(a,b)的對稱曲線方程是f(a–x,2b–y)=0.二、圓的方程.1.⑴曲線與方程:在直角坐標(biāo)系中,如果某曲線上的與一個二元方程的實數(shù)建立了如下關(guān)系:①曲線上的點的坐標(biāo)都是這個方程的解.②以這個方程的解為坐標(biāo)的點都是曲線上的點.那么這個方程叫做曲線方程;這條曲線叫做方程的曲線(圖形).⑵曲線和方程的關(guān)系,實質(zhì)上是曲線上任一點其坐標(biāo)與方程的一種關(guān)系,曲線上任一點是方程的解;反過來,滿足方程的解所對應(yīng)的點是曲線上的點.注:如果曲線C的方程是f(x,y)=0,那么點P0(x0

    5,y)線C上的充要條件是f(x0,y0)=02.圓的標(biāo)準(zhǔn)方程:以點為圓心,為半徑的圓的標(biāo)準(zhǔn)方程是.特例:圓心在坐標(biāo)原點,半徑為的圓的方程是:.注:特殊圓的方程:①與軸相切的圓方程②與軸相切的圓方程③與軸軸都相切的圓方程3.圓的一般方程:.當(dāng)時,方程表示一個圓,其中圓心,半徑.當(dāng)時,方程表示一個點.當(dāng)時,方程無圖形(稱虛圓).注:①圓的參數(shù)方程:(為參數(shù)).②方程表示圓的充要條件是:且且.③圓的直徑或方程:已知(用向量可征).4.點和圓的位置關(guān)系:給定點及圓.①在圓內(nèi)②在圓上③在圓外

    65.直線和圓的位置關(guān)系:設(shè)圓圓:;直線:;圓心到直線的距離.①時,與相切;附:若兩圓相切,則相減為公切線方程.②時,與相交;附:公共弦方程:設(shè)有兩個交點,則其公共弦方程為.③時,與相離.附:若兩圓相離,則相減為圓心的連線的中與線方程.由代數(shù)特征判斷:方程組用代入法,得關(guān)于(或)的一元二次方程,其判別式為,則:與相切;與相交;與相離.注:若兩圓為同心圓則,相減,不表示直線.6.圓的切線方程:圓的斜率為的切線方程是

    7過圓上一點的切線方程為:.①一般方程若點(x0,y0)在圓上,則(x–a)(x0–a)+(y–b)(y0–b)=R2.特別地,過圓上一點的切線方程為.②若點(x0,y0)不在圓上,圓心為(a,b)則,聯(lián)立求出切線方程.7.求切點弦方程:方法是構(gòu)造圖,則切點弦方程即轉(zhuǎn)化為公共弦方程.如圖:ABCD四類共圓.已知的方程…①又以ABCD為圓為方程為…②…③,所以BC的方程即③代②,①②相切即為所求.三、曲線和方程1.曲線與方程:在直角坐標(biāo)系中,如果曲線C和方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:1)曲線C上的點的坐標(biāo)都是方程f(x,y)=0的解(純粹性);2)方程f(x,y)=0的解為坐標(biāo)的點都在曲線C上(完備性)。則稱方程f(x,y)=0為曲線C的方程,曲線C叫做方程f(x,y)=0的曲線。2.求曲線方程的方法:.1)直接法:建系設(shè)點,列式表標(biāo),簡化檢驗;2)參數(shù)法;3)定義法,4)待定系數(shù)法.

    8

    當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

    此文檔下載收益歸作者所有

    當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
    溫馨提示:
    1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
    2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
    3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
    4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。
    最近更新
    更多
    大家都在看
    近期熱門
    關(guān)閉