資源描述:
《數(shù)學(xué)競賽中的初等數(shù)論研究》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、分類號:O156.1密級:學(xué)校代碼:11078保密日期:學(xué)號:2111515023保密期限:廣州大學(xué)學(xué)位論文數(shù)學(xué)競賽中的初等數(shù)論研究劉仁學(xué)科專業(yè):基礎(chǔ)數(shù)學(xué)研究方向:競賽數(shù)學(xué)論文答辯日期:2018年5月28日指導(dǎo)教師(簽名):答辯委員會主席(簽名):答辯委員會委員(簽名):Classi?edIndex:O156.1U.D.C.:SchoolNumber:11078SecrecyDate:StudentNumber:2111515023SecrecyPeriod:DissertationfortheMas
2、terDegreeinSciencesThestudyofelementarynumbertheoryinmathcompetitionRenLiuSupervisor:ProfessorHuaweiZhuAcademicDegreeAppliedfor:MasterofScienceSpecialty:PureMathematicsAffiliation:SchoolofMathematicsandInformationSciencesDateofDefence:May28,2018Degree-C
3、onferring-Institution:GuangzhouUniversity摘要摘要在初等數(shù)學(xué)中,沒有比數(shù)論更好的課程用以發(fā)現(xiàn)天才.初等數(shù)論是數(shù)論的一個分支,有著悠久的歷史.?dāng)?shù)學(xué)競賽中,數(shù)論問題占有相當(dāng)大的比重.解題,是數(shù)學(xué)的一大特點,初等數(shù)論的學(xué)習(xí)離不開解題,研究解題的目的是為了提高解題能力.本文將從國內(nèi)外各類中學(xué)數(shù)學(xué)競賽試題入手,主要從三個方面對數(shù)學(xué)競賽中的初等數(shù)論問題進(jìn)行研究.第一方面:數(shù)學(xué)競賽中初等數(shù)論問題的內(nèi)容研究及實例分析.第二方面:數(shù)學(xué)競賽中初等數(shù)論問題求解的常用策略,并且給出實例
4、來說明這些解題策略的實際應(yīng)用.第三方面:數(shù)學(xué)競賽中數(shù)論問題的背景研究,并且編擬幾道有背景的數(shù)學(xué)競賽試題.最后是對本文的小結(jié)與展望.關(guān)鍵詞:數(shù)學(xué)競賽;初等數(shù)論;解題策略;題目背景IAbstractAbstractInelementarymathematics,thereisnobettercoursethannumbertheorytodiscovergenius.Elementarynumbertheoryisabranchofnumbertheoryandhasalonghistory.Inthem
5、athematicscompetition,thenumbertheoryquestionoccupiestheconsiderableproportion.Solvingproblemsisamajorcharacteristicofmathematics.Thestudyofelementarynumbertheoryisinseparablefromsolvingproblems.Thepurposeofsolvingproblemsistoimprovetheabilityofsolvingp
6、roblems.Thisarticlewillstartwithallkindsofhighschoolmathematicscompetitionquestionsathomeandabroad,mainlythroughthreepartstostudytheelementarynumbertheoryprobleminthemathematicscompetition.Thefirstpart:thecontentresearchandcaseanalysisofelementarynumber
7、theoryprobleminmathematicscompetition.Thesecondpart:thecommonstrategiestosolvetheelementarynumbertheoryproblemsinmathematicscompetition,andgiveexamplestoillustratethepracticalapplicationofthesestrategies.Thethirdpart:theresearchonthebackgroundofthenumbe
8、rtheoryprobleminthemathematicscompetitionandpreparesomebackgroundmathcontestquestions.Thelastpartisthesummaryandprospectofthispaper.Keywords:mathematicscompetition;elementarynumbertheory;problemsolvingstrategy;questionbackgroundI