資源描述:
《stochastic-sde》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、StochasticProcessesincontinuoustimeStefanGeissApril28,20092Contents1Introduction52Stochasticprocessesincontinuoustime72.1Somede?nitions..........................72.2Twobasicexamplesofstochasticprocesses...........122.3Gaussianprocesses........................142.4Brownianmotion.....................
2、....252.5Stoppingandoptionaltimes...................292.6AshortexcursiontoMarkovprocesses.............333Stochasticintegration353.1De?nitionofthestochasticintegral...............363.2It?o’sformula............................533.3ProofofIto?’sformulainasimplecase.............634Stochasticdi?erential
3、equations674.1Whatisastochasticdi?erentialequation?...........674.2StrongUniquenessofSDE’s...................704.3ExistenceofstrongsolutionsofSDE’s..............734.4SolutionsofSDE’sbyatransformationofdrift.........754.5Weaksolutions..........................8134CONTENTSChapter1IntroductionOnegoalo
4、fthelectureistostudystochasticdi?erentialequations(SDE’s).Soletusstartwitha(hopefully)motivatingexample:AssumethatXtisthesharepriceofacompanyattimet≥0whereweassumewithoutlossofgeneralitythatX0:=1.TogetanideaofthedynamicsofXletusconsidertherelativeincrements(thesearetheincrementswhicharerelevantin?n
5、ancialmarkets)Xt+??Xt~b?+σYt,?Xtwithb∈IR,σ>0,and?>0beingsmall.Hereb?describesageneraltrendandσYt,?somerandomevents(perturbations).Askingseveralpeopleaboutthisapproachweprobablygetanswerslikethat:?Statisticians:therandomvariablesYt,?shouldbecenteredGaussianrandomvariables.?Mathematicians:theperturba
6、tionsshouldnothaveamemory,other-wisetheproblemgetstoodi?cult.HenceYt,?isindependentfromXt.?Then,inaddition,probablybothofthemagreetoassumethattheperturbationsbehaveadditively,thatmeansYt,?=Yt,?+Yt+?,?222sothatvar(Yt,?)=?isagoodchoice.AnapproachlikethisyieldstothefamousBlack-Scholesoptionpricingmode
7、l.Isitpossibletomakeoutofthisacorrectmathematicaltheory?Yesitis,ifweproceedforexampleinthefollowingway:Step1:TherandomvariablesYt,?willbereplacedbyacontinuoustimestochasticprocessW=(Wt)t≥0,calledBrownianmot