資源描述:
《semi-riemannian geometry and general relativity - s. sternberg》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、Semi-RiemannGeometryandGeneralRelativityShlomoSternbergSeptember24,200320.1IntroductionThisbookrepresentscoursenotesforaonesemestercourseattheundergraduatelevelgivinganintroductiontoRiemanniangeometryanditsprincipalphysicalapplication,Einstein’stheoryofgeneralrelativity.Thebackgroundassum
2、edisagoodgroundinginlinearalgebraandinadvancedcalculus,preferablyinthelanguageofdi?erentialforms.ChapterIintroducesthevariouscurvaturesassociatedtoahypersurfaceembeddedinEuclideanspace,motivatedbytheformulaforthevolumefortheregionobtainedbythickeningthehypersurfaceononeside.Ifwethickenthe
3、hypersurfacebyanamounthinthenormaldirection,thisformulaisapolynomialinhwhosecoe?cientsareintegralsoverthehypersurfaceoflocalexpressions.Theselocalexpressionsareelementarysymmetricpolynomialsinwhatareknownastheprincipalcurvatures.Theprecisede?nitionsaregiveninthetext.Thechapterculminateswi
4、thGauss’Theoremaegregiumwhichassertsthatifwethickenatwodimensionalsurfaceevenlyonbothsides,thenthetheseintegrandsdependonlyontheintrinsicgeometryofthesurface,andnotonhowthesurfaceisembedded.Wegivetwoproofsofthisimportanttheorem.(Wegiveseveralmorelaterinthebook.)The?rstproofmakesuseof“norm
5、alcoor-dinates”whichbecomesoimportantinRiemanniangeometryand,as“inertialframes,”ingeneralrelativity.ItwasthistheoremofGauss,andparticularlytheverynotionof“intrinsicgeometry”,whichinspiredRiemanntodevelophisgeometry.ChapterIIisarapidreviewofthedi?erentialandintegralcalculusonman-ifolds,inc
6、ludingdi?erentialforms,thedoperator,andStokes’theorem.Alsovector?eldsandLiederivatives.Attheendofthechapterareaseriesofsec-tionsinexerciseformwhichleadtothenotionofparalleltransportofavectoralongacurveonaembeddedsurfaceasbeingassociatedwiththe“rollingofthesurfaceonaplanealongthecurve”.Cha
7、pterIIIdiscussesthefundamentalnotionsoflinearconnectionsandtheircurvatures,andalsoCartan’smethodofcalculatingcurvatureusingframe?eldsanddi?erentialforms.WeshowthatthegeodesicsonaLiegroupequippedwithabi-invariantmetricarethetranslatesoftheoneparametersubgroups.Ashort