国产乱人视频免费观看网站,九九精品视频在线观看,九九久re8在线精品视频,日韩久久精品五月综合

<menu id="zjelp"></menu>

    <th id="zjelp"><tbody id="zjelp"><form id="zjelp"></form></tbody></th>
    <small id="zjelp"><menuitem id="zjelp"></menuitem></small>
  • <small id="zjelp"></small>

    <address id="zjelp"></address>
    <address id="zjelp"></address>
    semi-riemannian geometry and general relativity - s. sternberg

    semi-riemannian geometry and general relativity - s. sternberg

    ID:14360617

    大小:1.01 MB

    頁(yè)數(shù):251頁(yè)

    時(shí)間:2018-07-28

    semi-riemannian geometry and general relativity - s. sternberg_第1頁(yè)
    semi-riemannian geometry and general relativity - s. sternberg_第2頁(yè)
    semi-riemannian geometry and general relativity - s. sternberg_第3頁(yè)
    semi-riemannian geometry and general relativity - s. sternberg_第4頁(yè)
    semi-riemannian geometry and general relativity - s. sternberg_第5頁(yè)
    資源描述:

    《semi-riemannian geometry and general relativity - s. sternberg》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)

    1、Semi-RiemannGeometryandGeneralRelativityShlomoSternbergSeptember24,200320.1IntroductionThisbookrepresentscoursenotesforaonesemestercourseattheundergraduatelevelgivinganintroductiontoRiemanniangeometryanditsprincipalphysicalapplication,Einstein’stheoryofgeneralrelativity.Thebackgroundassum

    2、edisagoodgroundinginlinearalgebraandinadvancedcalculus,preferablyinthelanguageofdi?erentialforms.ChapterIintroducesthevariouscurvaturesassociatedtoahypersurfaceembeddedinEuclideanspace,motivatedbytheformulaforthevolumefortheregionobtainedbythickeningthehypersurfaceononeside.Ifwethickenthe

    3、hypersurfacebyanamounthinthenormaldirection,thisformulaisapolynomialinhwhosecoe?cientsareintegralsoverthehypersurfaceoflocalexpressions.Theselocalexpressionsareelementarysymmetricpolynomialsinwhatareknownastheprincipalcurvatures.Theprecisede?nitionsaregiveninthetext.Thechapterculminateswi

    4、thGauss’Theoremaegregiumwhichassertsthatifwethickenatwodimensionalsurfaceevenlyonbothsides,thenthetheseintegrandsdependonlyontheintrinsicgeometryofthesurface,andnotonhowthesurfaceisembedded.Wegivetwoproofsofthisimportanttheorem.(Wegiveseveralmorelaterinthebook.)The?rstproofmakesuseof“norm

    5、alcoor-dinates”whichbecomesoimportantinRiemanniangeometryand,as“inertialframes,”ingeneralrelativity.ItwasthistheoremofGauss,andparticularlytheverynotionof“intrinsicgeometry”,whichinspiredRiemanntodevelophisgeometry.ChapterIIisarapidreviewofthedi?erentialandintegralcalculusonman-ifolds,inc

    6、ludingdi?erentialforms,thedoperator,andStokes’theorem.Alsovector?eldsandLiederivatives.Attheendofthechapterareaseriesofsec-tionsinexerciseformwhichleadtothenotionofparalleltransportofavectoralongacurveonaembeddedsurfaceasbeingassociatedwiththe“rollingofthesurfaceonaplanealongthecurve”.Cha

    7、pterIIIdiscussesthefundamentalnotionsoflinearconnectionsandtheircurvatures,andalsoCartan’smethodofcalculatingcurvatureusingframe?eldsanddi?erentialforms.WeshowthatthegeodesicsonaLiegroupequippedwithabi-invariantmetricarethetranslatesoftheoneparametersubgroups.Ashort

    當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

    此文檔下載收益歸作者所有

    當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
    溫馨提示:
    1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
    2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
    3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
    4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。